翻訳と辞書
Words near each other
・ Oscillating Water Column
・ Oscillation
・ Oscillation (cell signaling)
・ Oscillation (mathematics)
・ Oscillation Isolator
・ Oscillation theory
・ Oscillations (album)
・ Oscillations 2
・ Oscillations Remixes
・ Oscillator (cellular automaton)
・ Oscillator (disambiguation)
・ Oscillator (EP)
・ Oscillator (technical analysis)
・ Oscillator linewidth
・ Oscillator phase noise
Oscillator representation
・ Oscillator start-up timer
・ Oscillator strength
・ Oscillator sync
・ Oscillatoria
・ Oscillatoriaceae
・ Oscillatoriales
・ Oscillatory integral
・ Oscillatory integral operator
・ Oscillibacter valericigenes
・ Oscillistor
・ Oscillococcinum
・ Oscillograph
・ Oscillon
・ Oscillons from the Anti-Sun


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Oscillator representation : ウィキペディア英語版
Oscillator representation
In mathematics, the oscillator representation is a projective unitary representation of the symplectic group, first investigated by Irving Segal, David Shale, and André Weil. A natural extension of the representation leads to a semigroup of contraction operators, introduced as the oscillator semigroup by Roger Howe in 1988. The semigroup had previously been studied by other mathematicians and physicists, most notably Felix Berezin in the 1960s. The simplest example in one dimension is given by SU(1,1). It acts as Möbius transformations on the extended complex plane, leaving the unit circle invariant. In that case
the oscillator representation is a unitary representation of a double cover of SU(1,1) and the oscillator semigroup corresponds to a representation by contraction operators of the semigroup in SL(2,C) corresponding to Möbius transformations that take the unit disk into itself. The contraction operators, determined only up to a sign, have kernels that are Gaussian functions. On an infinitesimal level the semigroup is described by a cone in the Lie algebra of SU(1,1) that can be identified with a light cone. The same framework generalizes to the symplectic group in higher dimensions, including its analogue in infinite dimensions. This article explains the theory for SU(1,1) in detail and summarizes how the theory can be extended.
==Historical overview==
The mathematical formulation of quantum mechanics by Werner Heisenberg and Erwin Schrödinger was originally in terms of unbounded self-adjoint operators on a Hilbert space. The fundamental operators corresponding to position and momentum satisfy the Heisenberg commutation relations. Quadratic polynomials in these operators, which include the harmonic oscillator, are also closed under taking commutators. A large amount of operator theory was developed in the 1920s and 1930s to provide a rigorous foundation for quantum mechanics. Part of the theory was formulated in terms of unitary groups of operators, largely through the contributions of Hermann Weyl, Marshall Stone and John von Neumann. In turn these results in mathematical physics were subsumed within mathematical analysis, starting with the 1933 lecture notes of Norbert Wiener, who used the heat kernel for the harmonic oscillator to derive the properties of the Fourier transform. The uniqueness of the Heisenberg commutation relations, as formulated in the Stone–von Neumann theorem, was later interpreted within group representation theory, in particular the theory of induced representations initiated by George Mackey. The quadratic operators were understood in terms of a projective unitary representation of the group SU(1,1) and its Lie algebra. Irving Segal and David Shale generalized this construction to the symplectic group in finite and infinite dimensions: in physics this is often referred to as bosonic quantization. André Weil later extended the construction to p-adic Lie groups, showing how the ideas could be applied in number theory, in particular to give a group theoretic explanation of theta functions and quadratic reciprocity. Several physicists and mathematicians observed the heat kernel operators corresponding to the harmonic oscillator were associated to a complexification of SU(1,1): this was not the whole of SL(2,C), but instead a complex semigroup defined by a natural geometric condition. The representation theory of this semigroup, and its generalizations in finite and infinite dimensions, has applications both in mathematics and theoretical physics.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Oscillator representation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.